
0090-6778 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2018.2881438, IEEE
Transactions on Communications

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. X, NO. X, XX 2018 1

Efficient NFV-Enabled Multicasting in SDNs
Zichuan Xu, Member, IEEE, Weifa Liang, Senior Member, IEEE, Meitian Huang, Mike Jia, Song

Guo, Senior Member, IEEE , and Alex Galis, Member, IEEE

✦

Abstract—Multicasting is a fundamental functionality of many network

applications, including online conferencing, event monitoring, video

streaming, and so on. To ensure reliable, secure and scalable multi-

casting, a service chain that consists of network functions (e.g., fire-

walls, Intrusion Detection Systems (IDSs), and transcoders) usually is

associated with each multicast request. We refer to such a multicast

request with service chain requirement as an NFV-enabled multicast

request. In this paper, we study NFV-enabled multicasting in a Software-

Defined Network (SDN) with an aim to maximize network throughput

while minimizing the implementation cost of admitted NFV-enabled

multicast requests, subject to network resource capacity, where the

implementation cost of a request consists of its computing resource

consumption cost in servers and its network bandwidth consumption

cost when routing and processing its data packets in the network. To

this end, we first formulate two NFV-enabled multicasting problems with

and without resource capacity constraints and one online NFV-enabled

multicasting problem. We then devise two approximation algorithms with

an approximation ratio of 2M for the NFV-enabled multicasting problems

with and without resource capacity constraints, if the number of servers

for implementing the service chain of each request is no greater than a

constant M (≥ 1). We also study dynamic admissions of NFV-enabled

multicast requests without the knowledge of future request arrivals with

the objective to maximize the network throughput, for which we propose

an efficient heuristic, and for a special case of dynamic request admis-

sions, we devise an online algorithm with a competitive ratio of O(logn)
for it when M = 1, where n is the number of nodes in the network.

We finally evaluate the performance of the proposed algorithms through

experimental simulations. Experimental results demonstrate that the

proposed algorithms are promising and outperform existing heuristics.

Index Terms—Network function virtualization; software-defined net-

works; multicasting; NFV-enabled multicasting; service chains; virtual-

ized network functions; routing; approximation and online algorithms.

1 INTRODUCTION

Today’s data centers and communication networks deploy
a variety of intermediary middleboxes, e.g., firewalls, In-
trusion Detection Systems (IDSs), proxies, and WAN op-
timizers, to guarantee the security and performance of

• Z. Xu is with the School of Software, Dalian University of Technology,
and the Key Laboratory for Ubiquitous Network and Service Software of
Liaoning Province, China, 116621. E-mails: z.xu@dlut.edu.cn

• W. Liang, M. Huang, and M. Jia are with the Research School of Computer
Science, the Australian National University, Canberra, ACT 2601, Aus-
tralia. E-mails: wliang@cs.anu.edu.au, meitian.huang@anu.edu.au, and
u5515287@anu.edu.au

• S. Guo is with the Department of Computing, the Hong Kong Polytechnic
University, Hong Kong. E-mail: song.guo@polyu.edu.hk

• A. Galis is with the Department of Electronic & Electrical Engineer-
ing, University College London, London WC1E 7JE, UK. E-mails:
a.galis@ucl.ac.uk

data transfers. However, considering that the middleboxes
are typically made by expensive dedicated hardware and
managed manually, they not only raise the capital expen-
ditures (CapEx) and operating expenses (OpEx) of many
service providers but also increase the inflexibility of their
management dramatically. Network Function Virtualization
(NFV) [6], [7], [12], [27] has been emerging as a promis-
ing paradigm to reduce the CapEx and OpEx of service
providers, by implementing network functions as software
components running in Virtual Machines (VMs). Under-
pinned by the NFV technique, Software-Defined Network-
ing (SDN) can be further utilized to enable flexible im-
plementations of network functions, by leveraging flexible
control and management empowered by the separation of
the control plane and the data plane.

Multicasting is a widely-used type of communication
in the mentioned NFV-enabled SDNs. Each multicast re-
quest transmits data from one source to multiple desti-
nations. The applications of multicasting include video
conferencing, multimedia distribution, and software up-
dates in data centers. In data center networks, multi-
casting is widely adopted by many applications from
front-end delay-sensitive cloud applications, to back-end
bandwidth-hungry computations [30]. Examples include
directing search queries to a set of indexing servers [3],
distributing executable binaries to a group of servers partic-
ipating cooperative computations such as MapReduce [28],
upgrading OS and software on data center servers, repli-
cating file chunks in distributing file systems [9]. All of
such applications need network functions to guarantee the
security or performance of their traffic. For example, an
Application Delivery Controller (ADC) may be needed to
replicate the data of an application to a group of servers,
to meet the security needs of the application and provide
simplified authentication, authorization and accounting [1].
In particular, with the SDN technology being envisioned
as the dominant technology for the next-generation data
center networks [36], [37], enabling efficient NFV-enabled
multicasting in SDNs becomes an urgent task. Techniques
designed for multicasting in conventional networks cannot
be applied to NFV-enabled multicasting as they do not con-
sider the placement of virtualized network functions (VNFs).
In this paper, we thus aim to enable efficient NFV-enabled
multicasting in SDNs via efficient and effective placement
of VNFs for multicast requests that require forwarding
their traffic to some specified middleboxes before reaching
their destinations. To admit multicast requests with network
function requirements that will be implemented in servers
as VMs, we study the problem of NFV-enabled multicasting
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in a software-defined network that is equipped with servers to
run the VMs.

Performing NFV-enabled multicasting in an SDN is
significantly challenging. The VMs in servers for network
function implementations are located at different locations
of the SDN, and this poses a great challenge to minimize the
cost of implementing multicast requests. Naive placement of
the VMs of each NFV-enabled multicast request at locations
that are far away from the source and/or the destinations
of the request may incur a prohibitive communication cost.
In addition, multicast requests usually arrive in the network
one by one without the knowledge of future arrivals. This
leads to difficulties to estimate dynamic workloads of both
computing and bandwidth resources at servers and links.
The challenges thus are (1) how to jointly find one or
multiple servers to implement its network functions by
finding a multicast tree for each multicast request while
meeting its computing and bandwidth demands; (2) how
to design a novel metric that can accurately capture the
dynamic resource usages and workloads in the SDN; and (3)
how to devise an online algorithm with a competitive ratio
to maximize the number of multicast requests admitted,
subject to resource capacity constraints.

Several studies on multicasting in SDNs have been
conducted recently [15], [16], [42], [43]. However, most of
them did not consider network functions in multicast re-
quests [15], [16] or dealt with a sequence of requests without
future arrival knowledge [42], [43]. In contrast, we here in-
vestigate NFV-enabled multicasting, by devising an approx-
imation algorithm with a provable approximation ratio for
realizing a single NFV-enabled multicast request. We also
develop a first online algorithm with a guaranteed competi-
tive ratio for the online NFV-enabled multicasting problem.
To the best of our knowledge, we are the first to formulate a
novel NFV-enabled multicast problem in SDNs with the aim
to minimize its implementation cost, through striving for
fine trade-offs between computing and bandwidth resource
consumptions if no more than M servers are employed
to implement the service chain of each request. We devise
the first approximation algorithm for the problem. We also
study online NFV-enabled multicasting and devise the first
online algorithm with a provable competitive ratio if only
one server is deployed for its service chain implementation.
The key ingredients in the design of both approximation
and online algorithms are a series of non-trivial reductions.
The developed analytical techniques for approximation and
competitive ratios of the proposed algorithms may have
independent of interest on the analysis of online algorithms
for other optimization problems that involve different types
of resource optimization.

The main contributions of this paper are as follows.
We first study the problem of NFV-enabled multicasting
in an SDN to minimize the implementation cost of each
NFV-enabled multicast request, in terms of both computing
and bandwidth resource consumptions. We then devise
the first approximation algorithm with an approximation
ratio of 2M to minimize the implementation cost of each
request, assuming that the number of servers used for
implementing its service chain is no more than M . We also
investigate dynamic admissions of NFV-enabled multicast
requests without the knowledge of their future arrivals with

an aim to maximize the network throughput by proposing
an online algorithm. Furthermore, we devise a novel online
algorithm with a provable competitive ratio for a special
case of dynamic request admissions when M = 1. We finally
evaluate the performance of the proposed algorithms by
experimental simulations. Experimental results show that
the proposed algorithms outperform existing heuristics.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 introduces the system
model, notations, and problem definitions. Section 4 devises
approximation algorithms for the NFV-enabled multicasting
problem with and without network resource capacity con-
straints. Section 5 devises online algorithms for the online
NFV-enabled multicasting problem. Section 6 evaluates the
performance of the proposed algorithms by experimental
simulation, and Section 7 concludes the paper.

2 RELATED WORK

SDN and NFV as emerging technologies have been shaping
the future networking landscape, by bringing the promise
of enabling inexpensive and flexible management solu-
tions [18], [14], [34]. Traditional routing algorithms that
are designed for conventional networks are inapplicable to
NFV-enabled SDNs. Novel routing algorithms that jointly
performs traffic routing and NFV placements are needed.
There are studies that explored the issues on placement and
resource allocation for NFVs in SDNs [6], [7], [22], [26], [31],
[41]. Most of these studies however do not consider multi-
casting in SDNs. For example, Moens et al. [31] investigated
efficient NFV placement in SDNs. They focused on a hybrid
scenario where some network functions are implemented by
dedicated physical hardware while others are implemented
in VMs. Lukovszki et al. [26] studied the problem of online
admission and embedding of service chains (i.e., a sequence
of virtualized network functions) into a substrate network
(i.e., an SDN with both bandwidth and computing resource
capacities on its links and nodes, assuming that servers are
installed at each node in the network. Li et al. [22] designed
and implemented a system that enables dynamic resource
provision in an NFV-enabled SDN. They also studied the
problem of maximizing the total number of unicast requests
that can be assigned to each service chain, by formulating an
Integer Linear Programming (ILP) solution and developing
a randomized rounding method. Cao et al. [5] considered
policy-aware traffic engineering in SDNs, by assuming that
the traffic has to pass a given sequence of network functions.
Cohen et al. [7] considered NFV placement in an SDN with
and without server capacity constraints for NFV-enabled
unicast requests. They reduced their problems into incapaci-
tated and capacitated facility location problems respectively,
and provided a bi-criteria approximation solution to the
problems. Kuo et al. [21] studied how to implement a single
NFV-enabled unicast request with the end-to-end delay
constraint by proposing a dynamic programming solution
to the problem. Guo et al. [11] investigated the throughput
maximization problem in NFV-enabled SDNs with respect
to service chaining specifications. They also studied the
online version that assumes the future arrivals of requests
are not known in advance. Xu et al. [39] studied the through-
put maximization and resource optimization problem in
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NFV-enabled networks, by assuming that the instances of
different types of service chains have been instantiated in
data centers. An optimal solution is proposed for a special
case of the problem, and an approximation algorithm is
devised for the original problem.

There are several studies focusing on multicasting in
SDNs [15], [42], [43]. Huang et al. [16] recently devised the
first online algorithms with provable competitive ratios for
online unicasting and multicasting in SDNs, under both
node capacities (forwarding table sizes) and link capacities
(bandwidth capacities) constraints. However, they did not
consider network function requirements of unicast and mul-
ticast requests. Huang et al. [15] studied the scalability of
multicasting in SDNs, by proposing an efficient algorithm
to find a branch-aware Steiner Tree (BST) for each multicast
request. Their solution is not applicable to the NFV-enabled
multicasting problem, due to the lack of efficient meth-
ods to deal with NFV placements. A very closely related
work to this study is the one by Zhang et al. [42], [43].
They investigated the NFV-enabled multicasting problem in
SDNs, by assuming that there are sufficient computing and
bandwidth resources to accommodate any multicast request,
for which they provided a 2-approximation algorithm for
the problem if only one server (M = 1) is deployed for
implementing the service chain of each multicast request.
However, their method cannot be extended to a general
case of the problem where multiple servers are employed.
It must be mentioned that for the sake of reliability, it is
usually better to have the traffic of each multicast being
processed by multiple servers (M > 1). In case of the
failure of a server, the other servers can continue the data
traffic of the request without being interrupted. Further-
more, in reality, it is not uncommon that both computing
and bandwidth resources in an SDN are limited, and they
need to be carefully allocated. Furthermore, Zhang et al. [42],
[43] did not consider dynamic admissions of a sequence of
multicast requests, which is much complicated compared
with admitting one or a set of given requests. Since the
resources allocated to current requests will heavily impact
the admissions of future requests and different requests may
have different resource demands, it becomes very crucial
that which requests should be admitted/rejected to maxi-
mize the network throughput.

Unlike most existing studies on online multicast routing
problems in traditional networks that considered either the
node capacity [17], [24], [25] or the link bandwidth con-
straint [2], [32], we take into account both the computing
resource capacity of servers and the bandwidth constraint
on links in an SDN. This is a much more challenging
optimization problem, due to (1) the need of innovative cost
models that can accurately capture the usage costs of two
different types of resources and new techniques to analyze
the performance of proposed online algorithms; and (2)
the need of jointly considering placing virtualized network
functions to the servers and finding multicast routes for
each multicast request. In addition, our problem is much
more general than the Steiner tree problem, because we
need to not only the server locations of VNFs but also the
routing graph consisting of the server locations. Therefore,
traditional Steiner tree algorithms, such as Kou et al.’s
algorithm [20], cannot be directly applicable for the NFV-

enabled multicasting problem.

3 PRELIMINARIES

In this section we first introduce the system model, notations
and notions, and then define the problems.

3.1 System model

We consider a software-defined network G = (V,E) with a
set V of SDN-enabled switch nodes and a set E of links
between SDN-enabled switch nodes. Some of the switch
nodes in V are attached with computing servers that can
implement various network functions as virtual machines
(VMs). The communication delay between a switch node
and the server attached to it usually is negligible in compar-
ison with the communication delay with other nodes in the
network, as they are connected by a high-speed optical fiber.
We thus denote by VS (⊆ V ) the subset of switch nodes
attached with servers. Notice that each node v ∈ VS is
treated as a switch node without an attached server if its
server is not used for implementing VMs. Otherwise, the
VM implementation cost of v must be taken into account.
Denote by Cv and Be the computing capacity of the server
attached to switch node v ∈ VS and the bandwidth capacity
of link e ∈ E in G, respectively. There is an SDN controller
in G that controls the allocations of both computing and
bandwidth resources of G to meet the resource demands of
each admitted NFV-enabled multicast request. Specifically,
when an SDN switch does not know how to handle the
first packet of a newly arrived multicast request, it will
send a message to the controller. Based on the resource
availabilities of links and nodes that are collected by the
controller, a route for the request will be calculated and
installed in the switches in the route. Fig. 1 is an example
of an SDN, where switch nodes v1, v2, and v6 are attached
with servers, while the rest of its nodes are not.

(a) An SDN G with a set V =
{v1, v2, v3, v4, v5, v6} of SDN-enabled switches
and a subset VS = {v1, v2, v6} of switches that
are attached with servers.

(b) A service chain ⟨ NAT, Firewall, IDS ⟩.

Fig. 1. System model and a service chain example
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3.2 NFV-enabled multicast requests and pseudo-
multicast trees

An NFV-enabled multicast request rk is represented by a
quadruple rk = (sk, Dk; bk, SCk), where sk ∈ V is the
source, Dk is the set of destinations (or terminals) with
Dk ⊆ V , bk is the demanded bandwidth by rk , and SCk is
the service chain of rk that consists of a sequence of network
functions that must be implemented by either dedicated
hardware middleboxes or virtual machines. Specifically, the
service chain SCk of request rk enforces that every packet
from the source of rk to go through each of the network
functions of the service chain in the specified order prior
to reaching its destinations, as illustrated in Fig. 1 (b). The
network functions in SCk can be implemented by VMs in
servers [12], [29], [33], [40]. Without loss of generality, we
assume that the network functions in SCk are consolidated to
a server in G. Specifically, when realizing multicast request
rk, its packet passes a server hosting the VMs of its service
chain SCk, the traffic will be directed to the VMs. Denote
by Cv(SCk) the amount of demanded computing resource
to implement SCk of multicast request rk in server v ∈ VS .

A pseudo-multicast tree in G is a graph GT derived from
a multicast tree T for the data traffic routing of an NFV-
enabled multicast request. We here use an example to illus-
trate the pseudo-multicast tree concept.

Consider a multicast tree T as shown in Fig. 2, where
nodes A and B are attached with servers for processing the
NFVs in SCk of a multicast request rk , the set of destinations
is {d1, d2, d3, d4, d5}. Recall that a packet from source sk
must pass through a server for processing the NFVs in SCk

prior to reaching all destinations. However, in this case,
only the destinations d1 and d4 in T can correctly receive
the processed packet, because there are servers at A and B
respectively, while the other three destinations d2, d3 and
d5 cannot. To enable the packet to pass through a server
before reaching d2, d3 and d4, the packet routing proceeds
as follows. When the packet is processed in node A, the
processed packet is sent back to node a along the tree path
PA,a, node a then forwards the processed packet to d2 (see
Fig. 2(b)). Similarly, the processed packet at B will be sent
back to node b along the tree path PB,b. Assume that the
distance between nodes A and e is greater than the distance
between nodes B and e, the processed packet at node b
will be further forwarded to node e. The processed packet
will finally reach node e and be forwarded to node d5 (see
Fig. 2 (b)). We term this routing graph derived from T as a
pseudo-multicast tree GT , as shown by Fig. 2 (b). It can be
seen that another tree T ′ (see Fig. 2 (c)) derived from GT

will have the same cost as GT , i.e., c(T ′) = c(GT ).

Notice that given an NFV-enabled multicast request, its
pseudo-multicast tree may not be unique, because its packet
can be directed to different destinations via different paths.
However, the determination of a pseudo-multicast tree can
be tailored to fit different optimization objectives. For exam-
ple, if the objective is to minimize the cost of implementing
the request, the found pseudo-multicast tree should be able
to achieve the lowest cost.

Fig. 2. A pseudo-multicast tree GT derived from a multicast tree T for
an NFV-Enabled multicast request rk, and another tree T ′ derived from
GT which has the identical cost as GT .

3.3 Problem definitions

Given an SDN G = (V,E) and a multicast request rk
(= (sk, Dk; bk, SCk)), we consider three NFV-enabled mul-
ticasting problems with and without resource capacity con-
straints as follows.

Problem 1. Assuming that G = (V,E) has sufficient com-
puting and bandwidth resources to meet the resource de-
mands of any NFV-enabled multicast request, the network
operator of G charges each admitted multicast request on a
pay-as-you-go basis, its major concern is its operational cost
that is defined as the sum of costs of consumed computing
and bandwidth resources by all admitted requests. Let ce
and cv be the usage costs of one unit of bandwidth and
computing resources at link e ∈ E and server v ∈ VS ,
respectively. Denote by Tk the pseudo-multicast tree for
a multicast request rk, the implementation cost of rk is
defined by

c(Tk) = bk ·
∑

e∈Tk

ce + Cv(SCk)
∑

v∈V k
S

cv, (1)

where V k
S is the set of servers that implement the service

chain of request rk. Notice that the edge cost bk ·
∑

e∈Tk
ce

is incurred due to the consumption of bandwidth resource.
Notice that one edge in G may be traversed more than

once in the pseudo-multicast tree, and each time its usage
cost is counted. Since the computing resource demand of
the service chain of each request usually is no greater than
the computing capacity of each server, we assume that the
number of servers, each of which implements the VNFs of
the service chain SCk of a single multicast request rk, is no
more than a constant M with M ≥ 1.

The NFV-enabled multicasting problem without SDN re-
source capacity constraints in G for an NFV-enabled multicast
request rk is to find a pseudo-multicast tree such that
its implementation cost is minimized, if no more than M
servers are used for implementing its service chain SCk,
assuming that G has sufficient computing and bandwidth
resources for the request.

Problem 2. Both computing and communication re-
sources in G are capacitated. Then, for an incoming NFV-
enabled multicast request, the network may or may not have
enough resources at that moment to admit the request. Or it
is too expensive to admit the request, i.e., the request should
be rejected.
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The NFV-enabled multicasting problem with SDN resource
capacity constraint in G for a single NFV-enabled multicast
request rk is to find a pseudo-multicast tree for the request
such that its implementation cost is minimized, if no more
than M servers are used for implementing its service chain
SCk, subject to the computing and bandwidth capacities in
G.

Notice that the both defined problems are NP-hard, as
their special case - the traditional multicast problem without
service chain requirements is NP-hard [23].

Problem 3. In reality, requests arrive into the network
one by one without the knowledge of future request arrivals.
We refer to this dynamic request admission as online request
admissions. As G is a service SDN and open for public
access, all of its computing and bandwidth resources are
dynamically allocated to users based on the ‘pay-as-you-go’
principle, its resources may not always meet the resource
demands of all requests at any time, while each arrived
request must be responded by either admitting or rejecting
it immediately. We thus formulate dynamic admissions of
NFV-enabled multicast requests as the online NFV-enabled
multicasting problem in G with the aim to admit as many
as NFV-enabled multicast requests without the knowledge
of future request arrivals, while meeting both computing
and bandwidth resource demands of each admitted request,
subject to both computing and bandwidth capacities on
servers and links in G, assuming that no more than M
servers are used to implement the service chain of each
request.

3.4 Approximation and competitive ratios

Due to NP-hardness of the defined problems, we will pro-
pose approximation algorithms with approximation ratios
and online algorithms with competitive ratios for them,
where the approximation and competitive ratios are defined
as follows, respectively.

The approximation ratio: Given a value γ ≥ 1, a γ-
approximation algorithm for a minimization problem P1 is a
polynomial time algorithm A that outputs a solution whose
value is no more than γ times the value of an optimal
solution for any instance I of P1, where γ is termed as the
approximation ratio of algorithm A.

Let OPT and S be an optimal solution of the offline prob-
lem and the solution delivered by an online algorithm A′ for
a maximization problem P2 respectively, where a sequence
of requests arrives one by one without the knowledge of
future request arrivals. The competitive ratio of the online
algorithm A′ is ξ if S

OPT ≥ 1
ξ for any instance I of the

maximization problem P2.
For the sake of convenience, symbols used in this paper

are summarized in Table 1.

4 APPROXIMATION ALGORITHMS FOR THE NFV-
ENABLED MULTICASTING PROBLEM

In this section we deal with the NFV-enabled multicast-
ing problem with and without SDN resource capacity con-
straints.

4.1 Algorithm overview

The basic idea of the proposed approximation algorithms
is to find a pseudo-multicast tree rooted at the source and
spanning all destinations, and each packet from the source
to destinations passes through a server in the tree, such
that the cost of the tree is minimized. To this end, the
finest trade-off between the computing and communication
costs needs to be explored. Specifically, if a server v with a
lower computing cost is included in the pseudo-multicast
tree for multicast request rk, the computing cost of imple-
menting rk may be reduced. This however will increase
the communication cost if the location of server v is far
from the destinations of rk. On the other hand, if there
are multiple servers located at different branches of the
multicast tree, then the packet can pass through each of
the servers to reach its destinations in Dk. This will lead to
less bandwidth usages from the source to the destinations,
which is achieved at the expense of high computing cost
by employing multiple servers. We thus need to identify
a set of servers with each implementing the service chain
SCk of rk and find a pseudo-multicast tree including the
identified server(s) on the path from the source sk to each
destination u ∈ Dk. As M is a constant, we aim to find a
pseudo-multicast tree in G that contains no more than M
servers and the path in the tree from sk to each destination
u ∈ Dk must pass through one of the identified servers such
that the cost of the tree is minimized.

Recall that there are |VS | switches in G with servers,
clearly M ≤ |VS |. As a pseudo-multicast tree for any NFV-
enabled multicast request can contain at least one but no
more than M servers, there are at most

(|VS |
M

)

combinations
of servers that can meet the computing resource demand of
service chain SCk of request rk. For each combination of
servers, a pseudo-multicast tree in G can be identified, and
the tree with the minimum cost is then used to implement
rk. We thus reduce the NFV-enabled multicast problem to
a Steiner tree problem in an auxiliary undirected graph. An
approximate solution to the latter returns an approximate
solution to the former.

4.2 Approximation algorithm without resource capacity
constraints

Given an NFV-enabled multicast request rk, we now devise
an approximation algorithm for the NFV-enabled multicast-
ing problem in G without SDN resource capacity constraint,
by reducing it to the Steiner tree problem in an auxiliary
undirected graph Gi

k = (V i
k , E

i
k; c) with an edge weight

function c for all i with 1 ≤ i ≤
(|VS |

M

)

, where V i
k = V ∪{s′k},

Ei
k = E ∪ {(s′k, v) | v ∈ V i

S}, V i
S (⊆ VS) is the ith

combination of servers in VS , and s′k is a virtual source of
request rk. For each v ∈ V i

S , if edge (sk, v) ∈ E in G,
the cost of edge (sk, v) ∈ Ei

k is assigned zero. s′k is the
new source in Gi

k, replacing the original source sk. Notice
that the original source sk is still contained in Gi

k serving
as a ‘regular’ switch node without an attached server. To
guarantee that the traffic of rk passes through its service
chain SCk that is implemented in one or multiple servers
in V i

S (⊆ VS ), we connect s′k with all server nodes in V i
S ,

where the edge between s′k and each server node v ∈ V i
S

in Gi
k represents a shortest path psk,v in G between nodes
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TABLE 1
Symbols

Symbols Meaning
G = (V, E) a software-defined network with a set V of switches and a set E of links
v and e a switch node v ∈ V and a link e ∈ E
VS(⊂ V ) the subset of switches nodes attached with servers
Cv and Be computer capacity of the server attached to node v ∈ VS and the bandwidth capacity of link e ∈ E
rk = (sk ,Dk; bk , SCk) a request with source node sk, a set Dk of destination (or terminals), an amount bk of bandwidth resource

demand, and service chain requirement SCk

Cv(SCk) the amount of demanded computing resource to implement SCk of multicast request rk in the server that is
attached to v ∈ VS .

T and GT a multicast tree and the pseudo-multicast tree derived from it
c(T ) the total edge of a multicast tree T
ce and cv the usage costs of one unit of bandwidth and computing resources at link e ∈ E and server v ∈ VS

V k
S the set of servers that implement the service chain of request rk

Tk the pseudo-multicast tree for rk
M the maximum number of servers that can be used to implement the service chain of each request
γ the approximation ratio of an approximation algorithm
OPT and S an optimal solution to the offline problem and the solution delivered by an online algorithm for a maximization

problem P2
S/OPT the competitive ratio of an online algorithm A′

Gi
k = (V i

k , E
i
k; c) the ith auxiliary graph constructed from graph G for request rk , where 1 ≤ i ≤

(|VS |
M

)

, V i
k is node set, Ei

k is
edge set, and c is an edge weight function

s′k a virtual source node of rk
T i
mst the minimum spanning tree in a complete graph consisting of nodes in {s′k} ∪Dk

Hi
k the subgraph of Gi

k derived from T i
mst

T i
k Steiner tree in Hi

k
G′ a subgraph of G where edges and node with insufficient available resources are removed, which is used in

algorithm Appro_Multi_Cap
Cv(k) and Be(k) the amount of available computing and bandwidth resources at node v and link e, when multicast request rk

arrives
cv(k) and ce(k) the unit resource usage costs at server node v and link e of the kth request rk
α and β constant bases in exponential functions
VS(k) = {v | v ∈ VS , Cv(k) ≥ Cv(SCk)}
w(e) weight of an edge in the auxiliary graph Gi

k
v′ and v′′ virtual nodes for server v
σv and σe two thresholds for node and edge costs of implementing a multicast request
PT
x,y a path in T between node x and node y

S(k) and R(k) the set of admitted and rejected requests by algorithm 3

sk and v. The weight of edge (s′k, v) is the cost sum of the
edges in path psk,v plus the cost of implementing SCk in
server v, i.e., c(s′k,v) =

∑

e∈ps′
k
,v
ce · bk + cv(SCk), where

cv(SCk) is the cost of the amount Cv(SCk) of computing
resource consumption for implementing SCk. In addition,
the weight ce of each edge e ∈ Ei

k ∩ E is the cost ce · bk of
allocating the amount bk of bandwidth resource to request
rk on edge e ∈ E. An example of the constructed auxiliary
graph Gi

k that is derived from the SDN in Fig. 1 is shown in
Fig. 3.

For the sake of convenience, in the rest of this paper we
assume that VS = {v1, v2, . . . , v|VS |}. Having constructed
the auxiliary graph Gi

k, we now find a Steiner tree in Gi
k

for request rk . We first find a minimum spanning tree (MST)
T i
mst in a complete graph consisting of nodes in {s′k} ∪Dk,

in which each edge is assigned a weight that is equal to the
length of the shortest path in Gi

k between its two endpoints.
Let Hi

k be a subgraph of Gi
k derived from T i

mst by replacing
each edge of T i

mst with its corresponding shortest path in
Gi

k. We then find an approximate Steiner tree T i
k in Hi

k,
by applying the approximation algorithm due to Kou et
al. [20], which will serve as the pseudo-multicast tree for rk.
Although there are more efficient approximation algorithms
for the Steiner problem such as [4], [35], either they are
randomized algorithms and their solutions are based on
randomized rounding, which may not be feasible, or they

Fig. 3. An example of the auxiliary graph G5
k = (V 5

k , E5
k) constructed

from an SDN G = (V,E) with V 5
S = {v1, v6}, assuming that M = 2 and

VS = {v1, v2, v6}. There are
(|VS |

M

)

= 3 · 2 = 6 auxiliary graphs derived
from G, and all different combinations of servers in VS are V 1

S = {v1},
V 2
S = {v2}, V 3

S = {v6}, V 4
S = {v1, v2}, V 5

S = {v1, v6}, and V 6
S =

{v2, v6}.

have theoretical interest by giving better approximation
ratios but take a much longer running time, which may
not be practical under our application scenario where each
request must be responded immediately, by either admitting
or rejecting the request; otherwise, users may not be happy
to the service and will escape from the services. While Kou et
al.’s algorithm can produce a quality solution in a reasonable
amount of time, and the solution is no greater than twice
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the optimal one. Furthermore, Kou et al.’s algorithm can be
easily implemented distributively.

The detailed algorithm for the NFV-enabled multicast
problem without SDN resource capacity constraints is given
in Algorithm 1.
Algorithm 1 Appro_Multi

Input: G = (V, E), VS , a multicast request rk = (sk ,Dk; bk , SCk), and
M ≥ 1.

Output: A pseudo-multicast tree Tk for implementing the multicast
request rk with the minimum cost.

1: costk ←∞; Tk ← ∅; /* the cost of the pseudo-multicast tree */
2: /* each combination of choosing i servers from |VS | servers */;
3: for i← 1 to

(|VS |
M

)

do
4: Construct an auxiliary undirected graph Gi

k = (V i
k , E

i
k), as

illustrated in Fig. (3);
5: Find an MST T i

mst in a complete graph induced by the nodes in
{s′k} ∪Dk with the weight of each edge being the length of the
shortest path in Gi

k between its two endpoints;
6: Let Hi

k be a subgraph of Gi
k derived from T i

mst, by replacing
each edge of T i

mst with the corresponding shortest path in Gi
k ;

find an approximate Steiner tree T i
k in Hi

k rooted at s′k and
spanning nodes in Dk , by invoking the approximation algorithm
due to Kou et al. [20];

7: if c(T i
k) < costk then

8: costk ← c(T i
k), Tk ← T i

k ; /* a candidate solution to the
problem */

9: if Tk contains node sk then
10: Merge nodes sk and s′k into s′k ;
11: Rename s′k in Tk as sk , and let Tk be the resulting graph (the

pseudo-multicast tree) for data traffic routing of request rk ;
12: return Tk and its cost c(Tk).

To illustrate the steps of Algorithm 1, we use G5
k in

Fig. 3 as an example to show how the algorithm works in
finding MST T i

mst and Hi
k in Fig. 4.

4.3 Approximation algorithm with resource capacity
constraints

We now deal with the NFV-enabled multicasting prob-
lem under both computing and bandwidth resource ca-
pacity constraints, by performing minor modifications to
Algorithm 1. Specifically, a subgraph G′ = (V ′, E′) of G is
constructed, where V ′ = V , E′ = {(u, v) | (u, v) ∈ E, and
the residual bandwidth at link (u, v) is no less than 2 · bk},
a subset set V ′

S of VS will be used, and V ′
S = {vi | vi ∈ VS if

the available computing resource at vi can meet the comput-
ing resource demands of rk}. Notice that link e is in E′ only
if its residual bandwidth is no less than 2bk. Specifically, an
amount bk of bandwidth resource is reserved for the traffic
of rk before being processed by its service chain. Another
bk bandwidth resource is reserved to its traffic after being
processed by its service chain in case the processed traffic
traverse the same link of its original traffic. This is shown in
Lemma 2.

Algorithm 1 then is applied to graph G′, using the
server set V ′

S . Clearly, all the resource demands by rk will be
met. In case G′ is disconnected, and none of its connected
components contains the source and all destinations of rk
and at least one server node, then the request should be
rejected, because there are no sufficient resources in G for
its implementation. For simplicity, this algorithm is referred
to as algorithm Appro_Multi_Cap.

Notice that in this paper we adopt a conservative way
to perform resource allocation when admitting requests, by
assuming that the system must have the sufficient resources

to meet the resource demand of any admitted request rk.
However, reserving at least 2bk amounts of bandwidth in
each link may exclude some links with less than 2bk but
greater than bk. Consequently, a few request may be rejected
despite that there are sufficient resources for its admission.
To this end, a greedy strategy can be adopted. That is, it
first applies algorithm 1 in a subgraph with link residual
capacity no less than bk. If a pseudo-multicast tree for the
request can be derived from the solution, then, the request
is admitted. Otherwise, we apply algorithm 1 with each link
of at least 2bk residual capacity for the request. If a pseudo-
multicast tree can be obtained, the request is admitted; it is
rejected otherwise. In practice, a rejected request may not be
rejected, and instead, the request can be placed to a waiting
queue until it is admitted when the system has sufficient
resources to meet its resource demands.

4.4 Algorithm analysis

The rest is to show the correctness of
Algorithm Appro_Multi and Appro_Multi_Cap,
and analyze its time complexity and the approximation
ratio.

Lemma 1. Algorithm Appro_Multi delivers a feasible solu-
tion for the NFV-enabled multicasting problem with and
without SDN resource capacity constraints.

See Appendix for the detailed proof.
To show the solution of algorithm Appro_Multi_Cap

is feasible, we need to ensure that the solution delivered by
it meets the network bandwidth capacity constraint on each
link e ∈ E as shown in Lemma 2.

Lemma 2. Given an SDN G = (V,E) and a sequence
of NFV-enabled multicast requests, let request rk =
(sk, Dk; bk, SCk) be the kth multicast request, the solu-
tion delivered by algorithm Appro_Multi_Cap must
preserve the network bandwidth capacity of each link,
if the residual bandwidth of each edge in Gi

k(V
i
k , E

i
k;w)

is no less than 2bk for all i with 1 ≤ i ≤
(|VS|

M

)

.

See the Appendix for the detailed proof.

Theorem 1. Given an SDN G = (V,E), a set VS of switch
nodes with each having an attached server, and an
NFV-enabled multicast request rk = (sk, Dk; bk, SCk),
there is a 2M approximation algorithm, Algorithm 1,
for the NFV-enabled multicasting problem with and
without SDN resource capacity constraints, assuming no
more than M servers will be employed for its service
chain implementation, where the approximation ratio
2M is the best. The time complexity of the algorithm
is O(|V |3 · |VS |M ), where |VS | ≪ |V | and M ≥ 1 is a
small integer.

See Appendix for the detailed proof.

5 ONLINE ALGORITHMS FOR THE ONLINE NFV-
ENABLED MULTICASTING PROBLEM

In this section we study the online NFV-enabled multicas-
ting problem in G with network resource capacity con-
straints. We first propose a novel cost model to capture
dynamic resource consumptions in G. We then develop
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(a) A complete
graph induced
by the nodes in
{s′k, d2, d1}.

(b) A MST T i
mst

based on the com-
plete graph built in
(a)

(c) A subgraph Hi
k of G5

k
constructed based on T i

mst by
replacing edges (s′k, d2) and
(d1, d2) in T i

mst with paths
{(s′k , v1), (v1, v2), (v2, v3)}
and {(v4, v2), (v2, v3)} in G5

k ,
respectively.

(d) The final pseudo-multicast tree
by finding a Steiner tree in Hi

k .

Fig. 4. An example of steps of algorithm Appro_Multi based on auxiliary graph G5
k in Fig. 3. Notice that edges (s′k , d2), (s

′
k, d1), and (d1, d2) in the

complete graph of (a) corresponds to paths ps′
k
,d2

= {(s′k, v1), (v1, v2), (v2, v3)}, ps′
k
,d1

= {(s′k, v6), (v6, v4)}, and pd1,d2 = {(v4, v2), (v2, v3)}

in G5
k, respectively

an efficient online heuristic for the problem based on the
proposed cost model. We finally devise an online algorithm
with a competitive ratio for a special case of the problem
when M = 1.

5.1 Cost model

Given an SDN G = (V,E) with limited computing and
bandwidth capacities at its servers and links, there is a
need of a cost model to capture dynamic consumption of
these resources in order to better guide the admissions of
future requests and utilize the resources. A simple cost
model, referred to the linear cost model, is widely adopted
to assign each request with a cost that is proportional
to the amount of its resource consumption regardless of
whether a specific resource is overloaded or under-loaded.
Clearly, this model may lead to some resources being under-
utilized while others being over-utilized. Consequently, the
significant number of requests may be rejected due to unbal-
anced resource utilization. Intuitively, overloaded resources
usually have higher probabilities of violating the resource
demands of admitted requests, due to the high dynamics
of resource consumptions. This eventually will affect the
admissions of future requests. Therefore, we encourage the
use of under-loaded resources while restricting the use
of overloaded resources to maximize the number of NFV-
enabled multicast request admissions.

Motivated by the above concern, we here introduce a
novel cost model that assigns an under-loaded resource
with a lower cost and an overloaded resource with a higher
cost. Thus, the resources in the network can be maximally
allocated among user requests, thereby maximizing the
network throughput. Specifically, let Cv(k) be the amount
of available computing resource at the server attached to
a switch node v ∈ VS and Be(k) the amount of available
bandwidth at link e ∈ E, respectively, when multicast
request rk arrives.

To capture the resource use of rk , we use exponential
functions to represent the costs cv(k) and ce(k) of its usages
of both computing and bandwidth resources at server node
v and link e:

cv(k) = Cv(α
1−Cv(k)

Cv − 1), (2)

where α is a constant with α > 1, Cv(k) = Cv(k −
1) − Cv(SCk) if rk is admitted and Cv(0) = Cv initially.
(1 − Cv(k)

Cv
) in Eq. (2) is the utilization ratio of computing

resource at server v ∈ VS . The rationale behind is that the
use of less residual computing resource will be charged with
a higher cost, while the use of plenty of residual computing
resource will be charged with a much less cost.

The cost ce(k) of using the bandwidth resource at link e
prior to the admission of rk can be similarly defined, i.e.,

ce(k) = Be(β
1−Be(k)

Be − 1), (3)

where β is a constant with β > 1, Be(k) = Be(k − 1) − bk
if rk is admitted, and Be(0) = Be initially. Notice that the
values of α and β reflect the sensitivity of resource usages. A
larger value implies that its utilization of a specific resource
is more sensitive.

5.2 Online algorithm

For each incoming multicast request rk (=
(sk, Dk; bk, SCk)), denote by VS(k) the subset of
servers in VS that have sufficient residual computing
resources to implement its service chain SCk, i.e.,
VS(k) = {v | v ∈ VS , Cv(k) ≥ Cv(SCk)}. It thus follows
that there are

(|VS(k)|
M

)

combinations of servers that can meet
the computing resource demand of the service chain SCk.
For each combination of servers in V i

S , a pseudo-multicast
tree T i

k in an undirected auxiliary graph Gi
k = (V i

k , E
i
k;w)

can be identified, and a pseudo-multicast tree with the
minimum weight among all T i

k with 1 ≤ i ≤
(|VS(k)|

M

)

is
then used for the request implementation. The construction
of Gi

k = (V i
k , E

i
k;w) is given as follows.

Given an SDN G = (V,E) and an NFV-enabled multi-
cast request rk = (sk, Dk; bk, SCk), we construct an auxil-
iary undirected graph Gi

k = (V i
k , E

i
k;w) for all i with 1 ≤

i ≤
(|VS(k)|

M

)

, where V i
k = V ∪ {s′k} ∪ {v′, v′′ | v ∈ V i

S} and
VS(k) ⊆ V )s = {v | v ∈ VS and Cv(k) ≥ cv(SCk)}, Ei

k =
{e | e ∈ E and Be(k) ≥ 2bk} ∪ {(s′k, v

′), (v′, v′′) | v ∈ V i
S}

∪ {(v′′, u) | (v, u) ∈ E, v ∈ V i
S , u ∈ V, and Be=(u,u) ≥ 2bk},

V i
S (⊆ VS(k)) is the i-th combination of the servers in VS(k),

and s′k is a virtual source of request rk. Fig. 5 illustrates the
construction of Gi

k when i = 5 and M = 2.
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Fig. 5. An example of the auxiliary graph G5
k = (V 5

k , E5
k;w) constructed

from an SDN G = (V, E) with V 5
S (k) = {v1, v6} for an incoming NFV-

enabled multicast request rk that contains a source sk = v5 and a
destination set Dk = {v3, v4}, assuming that M = 2 and VS(k) =
{v1, v2, v6}. There are

(|VS |
M

)

= 3 · 2 = 6 auxiliary graphs derived from
G with each corresponding a different combination of servers in VS(k),
i.e., V 1

S = {v1}, V 2
S = {v2}, V 3

S = {v6}, V 4
S = {v1, v2}, V 5

S = {v1, v6},
and V 6

S = {v2, v6}.

Intuitively, each edge in {(s′k, v
′) | v ∈ V i

S} represents
a shortest path psk,v in Gk = (Vk, Ek;w) between nodes sk
and v ∈ VS while each edge in {(v′, v′′) | v ∈ V i

S} represents
the server usage cost at v, where Vk = V , Ek = E, and w(e)
is the normalized cost of each edge e ∈ Ek defined in Eq. (3).
We then assign each edge e ∈ Ei

k a weight in Gi
k as follows.

w(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

e∈psk,v

ce(k)
Be

if e = (s′k, v
′) with v ∈ V i

S ,
cv(k)
Cv

if e = (v′, v′′) with v ∈ V i
S ,

c(v,u)(k)
B(u,v)

if e = (v′′, u) with v ∈ V i
S , u ∈ V,

and (v, u) ∈ E,
ce(k)
Be

otherwise,
(4)

where cv(k) and ce(k) are the usage costs of computing
resource at server node v and the bandwidth resource at link
e ∈ E when request rk arrives, as defined in Eqs. (2) and (3),
respectively. In other words, the differences between Gi

k and
G are that we remove the edges without sufficient residual
bandwidth to implement multicast request rk, and add
edges between virtual source s′k and every v′ (where v ∈ V i

S )
to represent a shortest path in G between sk and v and edges
(v′, v′′) to represent the resource usage cost of the server at
v, and connect v′′ to each neighbor node of v in G. It is
worth noting that since an amount bk of bandwidth resource
along the edges in the shortest path psk,v for each v ∈ VS

is reserved for the data traffic of rk from sk to server v for
processing, each edge (vi, vj) ∈ psk,v is in Ei

k only if it has
at least bk amounts of available bandwidth. For simplicity,
we refer to the edges that are derived from switches in VS

as node-derived edges. Denote by Ei
k,node the set of the node-

derived edges. Clearly, Ei
k,node = {(v′, v′′) | ∀v ∈ V i

S}.
Having constructed the auxiliary graph Gi

k =
(V i

k , E
i
k;w), we find an approximate Steiner tree T i

k in Gi
k

by applying the approximation algorithm due to Kou et
al. [20]. We use the same process to find an approximate
Steiner tree T i

k for each value of i with 1 ≤ i ≤
(|VS(k)

M

)

,
i.e., different combinations of servers. Denote by Tmin

k

a pseudo-multicast tree with the minimum weight, i.e.,
∑

e∈Tmin
k

w(e) ≤
∑

e∈T i
k
w(e) for all i with 1 ≤ i ≤

(|VS(k)
M

)

.
To decide whether request rk should be admitted, we

here adopt a novel admission control policy that jointly con-
siders both edge and node resource consumption costs, as
the admission of rk will significantly impact the admissions
of future requests whose arrivals are not known in advance.
The rationale behind adopting an admission control policy
is to control the impact of admissions of requests with large
resource demands on the admissions of future requests.
Specifically, if a request with a very large resource demand
is admitted, the future requests may be rejected when it
occupies the resource for a long time. This unfortunately
will heavily reduce the network throughput. The admission
control policy thus described as follows.

A multicast request rk will be admitted if it meets
conditions: (i)

∑

e∈Tmin
k ∩Emin

k,node
w(e) < σv ; and (ii)

∑

e∈Tmin
k ∩(Emin

k \Emin
k,node)

w(e) < σe, where σe and σv are

the pre-defined admission control thresholds for both band-
width and computing usage costs of Tmin

k , respectively.
If Tmin

k does exist, a feasible solution to the original prob-
lem will be derived from Tmin

k , by replacing its each edge
(s′k, v

′) with the corresponding shortest path psk,v in G and
implementing the service chain SCk on the servers in Tmin

k .
Note that no actual resource allocation is performed when
finding T i

k, and the resources are allocated to implement
request rk only if T i

k meets the admission control conditions;
otherwise, request rk will be rejected.

The detailed description of the algorithm is given in
Algorithm 2.
Algorithm 2 Online_Heu

Input: An SDN G = (V, E), a set VS of switches with each having
server attached to it, the bandwidth resource capacity Be of each
link e ∈ E and computing resource capacity Cv of each v ∈ VS ,
a sequence of NFV-enabled multicast requests rk that arrive at
the network one by one, and values for the pre-defined admission
control thresholds σe and σv .

Output: Admit or reject each incoming multicast request rk . If admit-
ted, a pseudo-multicast tree for the request will be returned.

1: G ← ∅; /* a set of pseudo-multicast trees */
2: for each multicast request rk do
3: costk ← ∞; Tmin

k ← ∅; /* the cost of the pseudo-multicast tree
*/

4: Find the shortest paths in Gk = (Vk, Ek;w) from sk to all nodes
in VS , and let psk,v be the found path from sk to a node v ∈ VS ;

5: for i← 1 to
(|VS |

M

)

do
6: Construct an auxiliary undirected graph Gi

k = (V i
k , E

i
k;w) as

shown in Fig. 5;
7: Find an approximate Steiner tree T i

k in Gi
k rooted at s′k and

spanning the nodes in Dk , by invoking the approximation
algorithm due to Kou et al. [20];

8: if c(T i
k) < costk then

9: costk ← c(T i
k);

10: Tmin
k ← T i

k ; /* a candidate solution */
11: if Tmin

k does not exist then
12: Reject multicast request rk ;
13: else
14: if (

∑

e∈Tmin
k ∩Emin

k,node
w(e) < σv ) and

(
∑

e∈Tmin
k

∩(Emin
k

\Emin
k,node

) w(e) < σe) then

15: An undirected graph G′′
k is derived from Tmin

k by replacing
each edge (s′k, v

′) in Tmin
k with its corresponding shortest

path psk,v in G;
16: G ← G ∪ {G′′

k};
17: else
18: Reject multicast request rk ;
19: return G.

Notice that to ensure that the solution delivered by
Algorithm 2 meets the network bandwidth capacity con-
straint on each link e ∈ E, link e is contained in Ei

k only
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if its residual bandwidth is no less than 2bk, as shown in
Lemma 2.

We finally analyze the performance of Algorithm 2 by
stating it in Theorem 2.

Theorem 2. Given an SDN G = (V,E) with the computing
capacity Cv for the server attached to each switch v ∈ VS

and the bandwidth capacity Be for each link e ∈ E, and
a sequence of multicast requests with the kth multicast
request being represented by rk = (sk, Dk; bk, SCk),
Algorithm 2 deliver a feasible solution for the on-
line NFV-enabled multicasting problem if the request
sequence consists of k NFV-enabled multicast requests,
and takes O(k|V |3|VS |M ) time, where M is an integer
constant which is the number of servers for the request
service chain processing.

See the Appendix for the detailed proof.

5.3 Online algorithm with M = 1

We now propose an online algorithm with a provable com-
petitive ratio for a special online NFV-enabled multicast-
ing problem where only a single server will be used to
implement the service chain of each multicast request, i.e.,
M = 1. The basic idea behind the algorithm is to determine
whether every incoming NFV-enabled multicast request rk
will be admitted or rejected, depending on a given admission
control policy. If rk is admissible, the algorithm requires to
jointly find a server with sufficient computing resource to
implement the service chain SCk and a pseudo-multicast
tree for rk, such that the cost of implementing the request
is minimized, subject to the resource capacity constraints on
the network.

To find a pseudo-multicast tree for request rk, we have
an important observation: one of the |VS | servers must be
contained in any pseudo-multicast tree for each request
rk, the pseudo-multicast tree must include the server as one of
the destination nodes of rk. Thus, we can find a Steiner tree
in Gk = (Vk, Ek;w) for request rk with source sk and
the destination set Dk ∪ {v}, where v ∈ VS has sufficient
computing resource. Notice that Gk(Vk, Ek;w) is an undi-
rected graph that is identical to G(V,E), i.e., Vk = V and
Ek = E. The weight we(k) of each edge e ∈ Ek is assigned
a normalized cost of the cost defined by Eq. (3), that is,
we(k) = ce(k)/Be, while the weight wv(k) of each node
v ∈ VS for rk is the normalized cost of the cost defined by
Eq. (2), i.e, we(k) = cv(k)/Cv .

Let T be an approximate Steiner tree in Gk rooted at
sk and spanning the terminals in Dk by the approximation
algorithm due to Kou et al. [20], where Gk is the graph
G(V,E) that considered the first k − 1 requests already,
partial resources at its servers and links are occupied by
some of the first (k − 1) requests at this moment. We build
a pseudo-multicast tree for rk. If server v is in any path in T
from sk to each destination, T is the pseudo-multicast tree,
and its cost is no more than twice the optimal one [20]; oth-
erwise, assume that the path between sk and a destination
node d does not contain any server v. Let u be the Lowest
Common Ancestor (LCA) in T between nodes v1 and v2,
i.e., u = LCA(v1, v2). Then, when the packet from sk is sent
to server v for processing, the processed packet continues
forwarding to all destinations in the subtree rooted at v;

for the destination d ∈ Dk, the processed packet at node
v is then sent back to node u, which then forwards toward
destination d. Clearly, in the worst scenario, the processed
packet will be sent back to the source sk for multicasting.

Let T and T ∗ be the found approximate Steiner tree by
the approximation algorithm in [20] and the optimal one.
Denote by Tk and T ∗

k the pseudo-multicast tree based on T
and the optimal multicast tree, respectively. The sum of the
weights of edges in the pseudo-multicast tree Tk based on
T and server v is

w(Tk) + wv(k) = w(T ) + w(PT
v,u) + wv(k) ≤ w(T )

+ w(PT
v,sk

) + wv(k) ≤ 2w(T ) + wv(k) ≤ 2(w(T ) + wv(k))

≤ 4w(T ∗) + 2wv(k) ≤ 4(w(T ∗) + wv(k)) ≤ 4OPTv, (5)

where PT
x,y is a path in T between node x and node y,

and OPTv is the optimal cost of the pseudo-multicast tree
using server v as its service chain processing server. Thus,
the optimal solution OPT for request rk in Gk thus is
OPT = minv∈VS{OPTv}.

We then adopt the following admission control policy
to guide the admission of each multicast request rk: (a)
If wv(k) ≥ σv for any v ∈ VS ∩ Tk, rk will be rejected;
and (b) if

∑

e∈Tk
we(k) ≥ σe, rk will be rejected, where

Tk is a pseudo-multicast tree delivered by an algorithm
in Gk for rk, σv > 0 and σe > 0 are admission control
thresholds of computing and bandwidth respectively, and
σv = σe = |V | − 1. The detailed online algorithm, referred
to as Online_CP, is given in Algorithm 3.

Algorithm 3 Online_CP

Input: G = (V, E), VS , Be for each e ∈ E, Cv for each v ∈ VS , a
sequence of multicast requests that arrive at the network one by
one with each request rk = (sk,Dk; bk, SCk), σe, and σv .

Output: The admission or rejection of each incoming NFV-enabled
multicast request, if admitted, a pseudo-multicast tree for the
request will be delivered.

1: G ← ∅; /* the pseudo-multicast trees for the admitted requests */
2: for each incoming request rk do
3: Tk ← ∅; /* the pseudo-multicast tree for rk if it is existent */
4: cost←∞; /* the cost of the pseudo-multicast tree Tk for rk */
5: Construct an undirected graph Gk = (Vk, Ek;w), by assigning

a normalized weight wv(k) for each each node v ∈ VS and a
normalized weight we(k) for each link e ∈ E;

6: for each v ∈ VS do
7: if wv(k) < σv then
8: Find an approximate Steiner tree T in Gk with the terminal

set {sk, v} ∪Dk by the algorithm due to Kou et al. [20];
9: if

∑

e∈T we(k) < σe then
10: Compute the lowest common ancestor

u = LCA(v, d1, d2, . . . , d|Dk|) in
T , where LCA(x1, x2, . . . , xn) =
LCA(LCA(x1, x2, . . . , xn−1), xn);

11: Calculate the cost cost(k) of pseudo-multicast tree de-
rived from T for rk ;

12: cost(k)← c(T ) + cv(SCk) + c(pv,u);
13: if cost(k) < cost then
14: Tk ← T , cost← cost(k);
15: if Tk ≠ ∅, then Admit request rk , G ← G ∪ {< rk, Tk, cost >};
16: else Reject request rk ;
17: return G.

We finally analyze the competitive ratio of Algorithm 3.
Let S(k) and OPT be the sets of admitted multicast requests
by Algorithm 3 and an optimal offline algorithm when
multicast request rk arrives. Let R(k) be the set of multicast
requests that are rejected by Algorithm 3 while admitted
by the optimal offline algorithm. Then the competitive ratio
of Algorithm 3 is |S(k)|

|S(k)∩OPT |+|R(k)| ≥ |S(k)|
|R(k)|+|S(k)| , since
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OPT = R(k) ∪ (OPT ∩ S(k)) ⊆ R(k) ∪ S(k). Specifi-
cally, the analysis of the competitive ratio of Algorithm 3
proceeds as follows. We first show the upper bound on
the accumulative computing and bandwidth resources oc-
cupied by admitted requests in S(k) in Lemma 3. We then
prove the lower bound on the accumulative computing
and bandwidth resources occupied by rejected requests in
R(k) in Lemma 4. We finally derive the competitive ratio
by combining the results of the upper and lower bounds
on admitted and rejected requests by the proposed on line
algorithm in Theorem 3.

Lemma 3. When a multicast request rk arrives, the cost sum
of all servers in VS is

∑

v∈VS
cv(k) ≤ 2C(k) · logα ·(|V |−

1) and the cost sum of all links in E is
∑

e∈E ce(k) ≤
2B(k) · log β · (|V |− 1), respectively, provided that bk′ ≤
mine∈E Be

log β and Cv(SCk′ ) ≤
minv∈VS

Cv

logα with 1 ≤ k′ ≤ k,
where B(k) and C(k) are the accumulative amounts of
bandwidth and computing resources being occupied by
the admitted requests in S(k), respectively.

See the Appendix for the proof.
In the following, we show the lower bound on the cost of

a multicast request in R(k) that is rejected by Algorithm 3
but admitted by an optimal offline algorithm.

Lemma 4. For each NFV-enabled multicast request rk′ ∈
R(k), if α = β = 2|V |, we have

w(T ′
k′ ) + wv′(k′) ≥

|V |− 1

4
, (6)

where T ′
k′ is the Steiner tree found by the optimal

offline algorithm to route the traffic of rk′ , and v′ is
the switch in T ′

k′ whose server is selected to implement
server chain SCk′ , assuming that both the following
inequalities are met: bk′ ≤ mine∈E Be

log β , and Cv(SCk′) ≤
minv∈VS

Cv

logα
with 1 ≤ k′ ≤ k.

See the proof in Appendix.
We finally analyze the competitive ratio of Algorithm 3.

Theorem 3. Given an SDN G = (V,E) with computing
capacity Cv of each server node v ∈ VS and bandwidth
capacity Be for each link e ∈ E, a sequence of NFV-
enabled multicast requests with the kth multicast request
rk being represented by a quadruple (sk, Dk; bk, SCk),
there is an online algorithm, Algorithm 3, with a com-
petitive ratio of O(log |V |) for the online NFV-enabled
multicasting problem if only one server is contained in
the pseudo-multicast tree for the service chain implemen-
tation of the request, provided that bk′ ≤ mine∈E Be

log β
and

Cv(SCk′) ≤
minv∈VS

Cv

logα
with 1 ≤ k′ ≤ k. The algorithm

takes O(k|V |3) time if the request sequence contains k
NFV-enabled multicast requests.

See the proof in Appendix.

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-
posed algorithms through experimental simulation, using
both synthetic networks generated by the GT-ITM tool and
real networks, in a platform programmed using Java. We
also investigate the impact of important parameters on the
performance of the proposed algorithms.

6.1 Environment settings

We consider SDNs consisting of from 50 to 250 nodes, where
each network is generated using GT-ITM [10]. The number
of servers in each network is set to 10% of the network
size, and they are randomly co-located with switches in
the network. We also use real network topologies, i.e.,
GÉANT [8] and an ISP network from [38]. There are nine
servers for the GÉANT topology as set in [12] and the
number of servers in the ISP networks is provided by [33].
The bandwidth capacity of each link varies from 1,000 Mbps
to 10,000 Mbps [19], and the computing capacity of each
server varies from 4,000 to 12,000 MHz [13]. Five types of
network functions, i.e., Firewall, Proxy, NAT, IDS, and Load
Balancing, are considered, and their computing demands
are adopted from [12], [29]. The source and destination
nodes of each multicast request is randomly generated, the
ratio of the maximum number Dmax of destinations of a mul-
ticast request to the network size |V | is randomly drawn in
the range of [0.05, 0.2], and its bandwidth resource demand
is randomly drawn in the range of [50, 200]Mbps. Using the
hourly rate (price) of a general purpose m3.xlarge Amazon
EC2 instance as a reference, the computing resource usage
cost is set at $0.25 per MHz. We assume that the cost of
consuming a unit bandwidth resource is proportional to the
length of a link, thus the cost of bandwidth resource usage of
a network link varies between $0.002 and $0.005 per Mbps.
We set both σe and σv at |V |− 1. The maximum number M
of servers that can be used to implement the service chain
of each multicast request is 3. The running time of each
algorithm is obtained based on a machine with a 3.40GHz
Intel i7 Quad-core CPU and 16 GiB RAM. Unless otherwise
specified, these parameters will be adopted in the default
setting.

We evaluate the performance of algorithm
Appro_Multi against the state-of-the-art – an algorithm
in [42], referred to as algorithm Alg_One_Server, which
only uses a single server to implement service chain SCk of
each multicast request rk . Namely, it first routes the traffic
of rk to a server, and then finds a Minimum Spanning Tree
(MST) of a complete graph Gc containing the destinations
of rk , where the edge between two destinations in Gc

represents the shortest path between the two nodes in
the original network. It then expands the MST into its
corresponding subgraph in the original network. It finally
selects the combination of server and subgraph with the
minimum cost.

For the online algorithms, we study the performance
of algorithms Online_Heu and Online_CP against those
of a baseline heuristic SP. For multicast request rk , algo-
rithm SP first removes links and nodes that do not have
enough available resources to admit rk, and then assigns
each link and each switch node in VS with the same
weight. For each candidate server in VS , it then finds a
shortest path from sk to v and a single-source shortest
path tree rooted at v and spanning all destinations of rk.
It finally uses a pseudo-multicast tree with the minimum
cost for rk . We also compare the performance of algorithms
Online_Heu and Online_CP against their counterparts
without the admission control policy, which are denoted
by algorithms Online_Heu_NoAd and Online_CP_NoAd,
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respectively. Specifically, in algorithms Online_Heu_NoAd
and Online_CP_NoAd the only condition that can reject
a multicast request is the lack of available resources to
fulfil the resource demands of the request. In the following
experiments, we use the operational cost to represent the total
cost of all admitted requests.

6.2 Performance evaluation of approximation algo-
rithms

We first evaluate the performance of algorithm
Appro_Multi against that of algorithm Alg_One_Server

by varying the network size from 50 to 250 and the ratio of
the maximum number Dmax of destinations of each request
to the network size |V | from 0.05 to 0.2. The operational
cost and running time curves delivered by algorithms
Appro_Multi and Alg_One_Server are drawn in Fig. 6,
where the operational costs and running times are the
average of admitting 1, 000 NFV-enabled multicast requests.
Specifically, we can see from Fig. 6 (a) that the operational
cost by algorithm Appro_Multi is around 80% of that of
algorithm Alg_One_Server. The reason is that algorithm
Appro_Multi may use multiple servers that are close to
the destinations of the request to implement the service
chain of the request, which can significantly reduce the
cost of bandwidth resource usage. Furthermore, it can be
seen from the figure that the performance gap between
the two algorithms becomes larger and larger, with the
increase on the network size. The rationale behind is that
algorithm Appro_Multi has more chances to select a
set of servers that are closer to the destinations of each
request, considering that more servers in larger networks
are to be chosen. The similar performance behavior can be
observed from Figs. 6(b) and (c). Furthermore, it can be
seen from Figures 6 (d) - (f) that approximation algorithm
Appro_Multi takes a slightly more time than that of
algorithm Alg_One_Server, as different combinations of
servers in VS are to be considered.

We then investigate the performance of approximation
algorithms Appro_Multi and Alg_One_Server in real
networks GÉANT and AS1755, by varying Dmax

|V | from 0.05
to 0.2. Fig. 7 shows that the operational costs and running
times of both algorithms. It can be seen that the operational
cost delivered by algorithm Appro_Multi is much lower
than that by algorithm Alg_One_Server while taking a
slightly more running time. For example, the operational
cost by algorithm Appro_Multi in network AS1755 is
around 30% lower than that of algorithm Alg_One_Server

when Dmax

|V | = 0.15 as shown in Fig. 7 (b).
The rest is to evaluate the performance of approximation

algorithm Appro_Multi_Cap, by setting Dmax

|V | at 0.2. No-
tice that algorithm Alg_One_Server is not considered as
a benchmark as it does not consider SDN resource capacity
constraints. From Figure 8(a), we can see that the operational
cost of algorithm Appro_Multi_Cap is larger than that of
algorithm Appro_Multi. The reason is that the algorithm
Appro_Multi_Cap excludes the servers and links without
enough available resources from the consideration for an
incoming multicast request, this may reduce the number of
combinations of servers that can be explored to implement
request.

6.3 Performance evaluation of online algorithms

We then evaluate the proposed online algorithms
Online_Heu and Online_CP against algorithms SP,
Online_Heu_NoAd, and Online_CP_NoAd, by varying
the network size from 50 to 250 for a monitoring period that
consists of 300 multicast requests. The numbers of admitted
requests by algorithms Online_Heu and Online_CP are
shown in Fig. 9. Specifically, we can see from Fig. 9 (a) that
online algorithm Online_Heu admits at least twice num-
bers of requests admitted by algorithm SP. Although the to-
tal resource capacity of each network keeps increasing with
the increase on its size, the number of requests admitted
by each mentioned algorithm on it does not monotonically
increase. This is because it is very likely that the locations
of the destinations of each multicast request in the network
are far away from each other, thereby increasing the rejec-
tion likelihood of the request, due to more bandwidth re-
source consumptions. In addition, we can see that algorithm
Online_Heu admits more requests than that by algorithm
Online_Heu_NoAd without the admission control policy.
The rationale behind is that the admission control policy
rejects requests with high resource demands to preserve the
resourced for future requests with low resource demands.
Similar performance results delivered by online algorithm
Online_CP can be observed in Fig. 9 (b).

We now evaluate the performance of online algorithms
Online_Heu and Online_CP against online algorithms
SP, Online_Heu_NoAd, and Online_CP_NoAd, by vary-
ing the number of requests from 50 to 300, in a GT-ITM
generated network with size 100, and real networks GÉANT,
AS1755, and AS4755, respectively. It can be seen from Fig. 10
(a) that algorithms Online_Heu, SP, Online_Heu_NoAd
can admit almost all requests if the number of requests
is no greater 100. Otherwise, algorithm Online_Heu ad-
mits more requests than those by algorithms SP and
Online_Heu_NoAd. Also, the performance gap between al-
gorithms Online_Heu and SP increases with the growth of
the number of requests. The reason is that online algorithm
Online_Heu considers the workload (or the utilization) of
each resource by assigning each resource an exponential
cost, while algorithm SP does not take the resource work-
load and assigns the same weight to the same amount
of resource at different nodes and links, which may lead
to the excessive usage of a heavily-loaded resource. From
Fig. 10 (e), we can also see the similar performance of al-
gorithm Online_CP against algorithms Online_CP_NoAd
and SP in GT-ITM generated topologies. Regarding their
performance in networks GÉANT, AS1755, and AS4755,
Figures 10 (b) - (d), and Figures 10 (f) - (h) illustrates
similar trends of algorithms Online_Heu and Online_CP,
respectively.

6.4 Impact of parameters on the performance of differ-
ent algorithms

In the following we study the impact of the number of
servers M for implementing the service chain of each
multicast on the performance of approximation algorithm
Appro_Multi against that of approximation algorithm
Alg_One_Server in real networks GÉANT, AS1755, and
AS4755 [8], [38], by varying the value of M from 2 to 5.
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Fig. 6. The performance of algorithms Appro_Multi and Alg_One_Server with different ratios of Dmax/|V |.
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The results are depicted in Fig. 11. From Figures 11 (a), (b),
and (c), it can be seen that the operational cost delivered
by algorithm Appro_Multi is consistently lower than that
by algorithm Alg_One_Server for different networks with
different Ms. For example, as shown in Fig. 11 (c), the
operational cost of approximation algorithm Appro_Multi

in network AS4755 is at least 30% less than that of algorithm
Alg_One_Server. Also, the operational cost of algorithm
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Fig. 9. The performance of online algorithms Online_Heu, Online_CP,
and SP by varying the network sizes from 50 to 250.

Appro_Multi decreases while its running time increases,
with the increase of M , due to more server combinations to
be explored.

We finally investigate the impact of α and β on the per-
formance of online algorithm Online_CP, by varying α and
β from 21|V | to 25|V | while setting σv = σe = |V |−1. Fig. 12
plots the performance curves of algorithm Online_CP. It
can be seen from Fig. 12 (a) that when β is fixed, the larger
the value of α, the less number of requests can be admitted
by algorithm Online_CP. Also, when α is fixed, similar
performance can be found in Fig. 12 (b).

7 CONCLUSION

In this paper we studied NFV-enabled multicasting in an
SDN. We first devised an approximation algorithm with
a constant approximation ratio, assuming that the number
of servers for implementing each service chain is no more
than a constant M ≥ 1, subject to the computing and
bandwidth capacity constraints. We then studied dynamic
admissions of NFV-enabled multicast requests without the
knowledge of future arrivals, with the objective to maximize
the network throughput, for which we proposed an efficient
heuristic and an online algorithm with a provable competi-
tive ratio if M = 1. We finally evaluated the performance of
the proposed algorithms by experimental simulations. Sim-
ulation results demonstrate that the proposed algorithms
outperform the other heuristics.
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Fig. 10. The performance of algorithms Online_Heu, Online_CP, and SP by varying the number of requests in a monitoring period from 50 to 300
while fixing the network size at 100.

2 5

(a) Operational cost by differ-
ent algorithms in GÉANT
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Fig. 11. The performance of algorithms Appro_Multi and Alg_One_Server in networks of GÉANT, AS1755, and AS4755.
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Fig. 12. The impact of parameters α and β on the performance of
algorithms Online_CP by varying α or β while fixing the other at 21|V |.
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APPENDIX

Proof of Lemma 1

Proof We here show that the solution delivered by
Algorithm 1 is feasible. Each path p in Tk from s′k to one
destination d ∈ Dk corresponds to a path in G from sk to d.
This is evidenced by the fact that any path in subgraph Hi

k

of Gi
k, starting from s′k must use one of its incident edges in

Ei
k, and the another endpoint v of the edge must be a server

in V i
S ⊆ VS , following the construction of Gi

k. This implies
that each path in Tk from sk to any destination d ∈ Dk must
use one of the servers in V i

S . And Tk includes all nodes in
Dk. Thus, the tree obtained is a feasible pseudo-multicast
tree for multicast request rk.

Proof of Lemma 2

Proof Following the construction of Gi
k, each approximate

Steiner tree T i
k in Gi

k will include at least one edge between
the virtual source node s′k and a switch node attached to
server vj ∈ V i

S , which is replaced by the corresponding
shortest path psk,vj in G between sk and vj for the ad-
mission of request rk . However, there may exist an edge
e ∈ E which is in both T i

k \ {(s′k, vj) | vj ∈ V i
S} and psk,vj .

Whenever this happens, edge e will be used twice in the
data traffic routing of request rk: one is when e is in path
psk,u between the source sk and a server u ∈ V i

S , where
the edge (s′k, u) ∈ {(s′k, vj) | vj ∈ V i

S} ⊂ Ei
k derived from

server u is included in Tmin
k ; and another is that edge e is in

a path between server u and at least one destination in Dk.
Thus, each link e ∈ Ei

k must have at least the amount 2bk
of residual bandwidth for the admission of request rk, to
ensure that the data traffic of request rk can be routed from
its source sk to each of its destinations.

Proof of Theorem 1

Proof We first analyze the approximation ratio of
Algorithm 1. Let G∗

T be the optimal pseudo-multicast
tree for the NFV-enabled multicast request rk in G. If G∗

T

is not a multicast tree, there is a corresponding tree T ′
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with the identical cost as G∗
T , following the reduction in

subsection 3.2; otherwise, GT itself is a multicast tree. From
now on, we denote by T ∗ either the optimal multicast tree
G∗

T or its corresponding cost-identical tree T ′. We assume
that there are l servers in T ∗ with each implementing SCk

with 1 ≤ l ≤ M . Without loss of generality, we assume
that these l nodes are v1, v2, . . . , vl, respectively. Clearly,
it can be shown that none of pairs of these nodes in T ∗

has the ancestor and descendant relationship in terms of a
node being used as a server, otherwise the node in VS will
be treated as a regular switch node without the use of its
server. Each subtree T ∗

vi
of T ∗ rooted at vi contains some

destinations, and all of the l subtrees will contain all the
destinations in Dk, following its definition. We construct
another tree T ∗

c = (V ′, E′) which is derived from T ∗ by
compressing the path in T ∗ from sk to each node vi as
follows. We replace the source node sk by a node s′k and
the path in T ∗ from sk to vi by an edge (s′k, vi), and assign
the edge a weight that is the sum of all edge costs in the
path plus the cost of using server vi. In the worst case, each
of such compressions can increase the cost of the optimal
tree, and there are in total l compressions. Furthermore, for
each compression, if the cost sum of all edges from the
source sk to each vi dominates the cost of the tree, each
of such compressions can increase the total cost by a value
that equals the cost of T ∗. We thus claim that the cost of
tree T ∗

c is no greater than l times the cost of tree T ∗, i.e.,
c(T ∗

c ) ≤ l · c(T ∗).
It can be seen that there is a multicast tree T i

k in
Gi

k rooted at source s′k and spanning all destinations in
Dk, which has the same topological structure as T ∗

c , how-
ever, it has a lower cost compared with that of T ∗

c , i.e.,
c(T i

k) ≤ c(T ∗
c ). This is because the weight of each edge in

Gi
k between s′k and vi is the length of the shortest path in

G between the two nodes plus the cost of using server vi,
while the corresponding edge weight in T ∗

c is the sum of all
edge weights in the path in T ∗ between sk and vi plus the
cost of using server vi.

Let TOPT,i
k be an optimal multicast tree in Gi

k rooted
at s′k and spanning all destinations in Dk and each path
in the tree from s′k to a destination goes through one of
the servers in V ′

S . Then, c(TOPT,i
k ) ≤ c(T i

k) as T i
k is one

of the multicast trees for multicast request rk . Let T app,i
k be

an approximate multicast tree in Gi
k for multicast request

rk, by the approximation algorithm with an approximation
ratio of 2 due to Kou et al. [20]. We then have c(T app,i

k ) ≤
2c(TOPT,i

k ). Since c(T i
k) ≤ c(T ∗

c ) and c(T ∗
c ) ≤ l · c(T ∗), we

have c(T app,i
k ) ≤ 2c(TOPT,i

k ) ≤ 2c(T i
k) ≤ 2c(T ∗

c ) ≤ 2 · l ·
c(T ∗). Since a pseudo-multicast tree Tk with the minimum
cost from the

(|VS |
M

)

auxiliary undirected graphs Gi
k for all i

with 1 ≤ i ≤
(|VS |

M

)

will be found and the value of l is within
[1,M ], the cost of the pseudo-multicast tree Tk for rk is no
greater than 2M · c(T ∗).

We finally analyze the time complexity of Algorithm 1
as follows. The algorithm proceeds iteratively. Within each
iteration, it first constructs an auxiliary graph Gi

k, and
then finds an approximate Steiner tree T app,i

k in Gi
k for

each multicast request rk. It takes O(|E| + |V | log |V |) time
to find a single-source shortest path tree in Gk by Dijk-
stra’s algorithm, while it takes O(|V i

k |
3) = O(|V |3) time

to find an approximate Steiner tree T app,i
k [20]. There are

O(
(|VS |

M

)

) ( = O(|VS |M )) iterations. The algorithm thus takes
O(|V |3 · |VS |M ) time. For example, if |VS | = O(log |V |)
and M = 3, then the time complexity of Algorithm 1 is
O(|V |3 · log3 |V |).

Proof of Theorem 2

Proof We first show that the solution delivered by
Algorithm 2 is feasible, meeting the computing and band-
width resource demands of multicast request rk . This can
be evidenced by the construction of Gi

k for all i with
1 ≤ i ≤

(|VS(k)|
M

)

. Specifically, for meeting the computing
resource demands of request rk , only the switch nodes
whose attached servers with sufficient available comput-
ing resource will be included in V i

S . For the bandwidth
resource demand bk of multicast request rk, an amount
bk of bandwidth resource is reserved on each link in the
shortest path psk,v in G from sk to each v ∈ VS for the
transfer of the original traffic of rk, and an equal amount
is allocated to transfer the processed traffic by each selected
server to destinations in Dk. By Lemma 2, it can be seen
that the bandwidth capacity constraint on each link is met.
Notice that if a switch v′ ∈ VS is not selected in the
solution, the preserved resource bk in each edge of path
psk,v will be released to the resource pool. Also, following
the construction of Gi

k, it can be seen that each routing path
from s′k to a destination node u must pass through a node
u in the path and u is the neighbor of s′k, u ∈ V i

S is a
server with sufficient computing resource for SCk, i.e., the
available computing resource at u is at least Cu(SCk). Thus,
the solution is a feasible solution.

We then analyze the running time of the proposed online
algorithm. Clearly, the construction of auxiliary graph Gi

k

takes O(|V | log |V | + |E|) time, as its edge assignment
needs finding a single-source shortest path tree in G which
takes O(|V | log |V | + |E|) time. Finding an approximate
Steiner tree in Gi

k takes O(|V i
k |

3) = O(|V |3) time, by the
approximation algorithm in [20]. There are O(

(|VS(k)|
M

)

) (=
O(|VS(k)|M ) = O(|VS |M )) different values of i, and trans-
forming a minimum-cost approximate Steiner tree Tmin

k to
a feasible solution of the problem takes O(|VS | + |V |) time.
Therefore it takes O((|V | log |V | + |E| + |V |3) · |VS |M ) =
O(|V |3 · |VS |M ) time for each incoming multicast request.
The algorithm thus takes O(k|V |3|VS |M ) time if there are
k NFV-enabled multicast requests in the request sequence.
The theorem follows.

Proof of Lemma 3

Proof Consider any k′ ∈ S(k) admitted by the online
algorithm, its data traffic is first routed to a server v ∈ VS

that hosts its service chain SCk via path psk,v in G, and then
to each of its destinations in Dk through a subtree Tv with
root v. The costs of computing resource usage of different
servers in VS are different, we thus have

cv(k
′ + 1)− cv(k

′) ≤ Cv(α
1−Cv(k′+1)

Cv − α1−Cv(k′)
Cv )

= Cvα
1−Cv(k′)

Cv (α
Cv (SC

k′ )

Cv − 1)

= Cvα
1−Cv(k′)

Cv (2
Cv(SC

k′ ) log α

Cv − 1) (7)
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≤ Cvα
1−Cv(k′)

Cv (
Cv(SCk′ ) logα

Cv
) (8)

= α1−Cv(k′)
Cv Cv(SCk′ ) · logα. (9)

Notice that the derivation from Eq. (7) to inequality (8)
is due to that 2x − 1 ≤ x for 0 ≤ x ≤ 1. Similarly, if edge
e ∈ E is in a pseudo-multicast tree for multicast request rk,
we have

ce(k
′ + 1)− ce(k

′) ≤ β1−Be(k′)
Be bk′ · log β. (10)

Notice that cv(0) = 0 for all v ∈ VS . If an NFV-enabled
multicast request rk′ is admitted, this means that

wv(k
′) = α1−Cv(k′)

Cv − 1 ≤ σv = |V |− 1, (11)

We now calculate the cost sum of all edges and the server
attached to v ∈ VS when admitting the multicast request rk.
Notice that if an edge in E is not included in Tk for rk, its
cost does not change after the admission of rk . So does the
cost of a server that is not used for implementing SCk of rk.
Assuming that v is chosen for rk′ , we have
∑

v∈VS

cv(k
′ + 1)− cv(k

′) = cv(k
′ + 1)− cv(k

′)

≤ (α1−Cv(k′)
Cv )Cv(SCk′ ) logα, by inequality (9)

= (α1−Cv(k′)
Cv − 1)Cv(SCk′ ) logα+ Cv(SCk′) logα

≤ (α1−Cv(k′)
Cv − 1)Cv(SCk′ ) logα+ (|V |− 1)Cv(SCk′ ) logα,

since |V | > 1

≤ 2Cv(SCk′ ) logα(|V |− 1) by inequality (11). (12)

Similarly we have
∑

e∈E

ce(k
′ + 1)− ce(k

′) ≤ 2bk′ log β(|V |− 1). (13)

We finally have

∑

v∈VS

cv(k) =
k−1
∑

k′=1

∑

v∈VS

(cv(k
′ + 1)− cv(k

′))

≤
∑

k′∈S(k)

2Cv(SCk′ ) · logα · (|V |− 1)

= 2C(k) · logα · (|V |− 1),

and similarly
∑

e∈E ce(k) ≤ 2B(k) · log β · (|V |− 1).

Proof of Lemma 4

Proof A multicast request rk′ will be rejected by the pro-
posed online algorithm, Algorithm 3, because of the fol-
lowing cases. Case 1, there is no sufficient computing re-
source for implementing the service chain of rk′ ; Case 2.
There is no sufficient bandwidth resource for routing the
traffic of rk′ to its destinations; Case 3. The weighted sum of
edges in the pseudo-multicast tree for rk′ is too high (Step 9),
and/or the weight of the selected server attached to switch
v to implement the service chain of rk′ is too high (Step 7).

Case 1. Let v′ be the switch whose attached server is
selected to implement the service chain of request k′. As
the request is rejected by Algorithm 3 due to insufficient
available computing resource, we have Cv′(k′) < Cv(k′).

Therefore, 1 − Cv′ (k
′)

Cv′
≥ 1 − Cv(k

′)
Cv(SCk′)

≥ 1 − 1
logα

, since

Cv(SCk) ≤
minv∈VS

Cv

logα
. We then have

w(T ′
k′) + wv′(k′) ≥α

1−
C
v′

(k′)

C
v′ − 1 > α1− 1

log α − 1

=
α

2
− 1 = |V |− 1. (14)

Case 2. If request rk′ is rejected in this case, there exists
an edge e′ ∈ T ′

k′ that does not have enough bandwidth
resource. This implies that for edge e′, we have Be′(k′) <

bk′ . Thus, we have 1 − Be′ (k
′)

Be′
≤ 1 − bk′

Be′
≤ 1 − 1

log β
, since

bk′ ≤ mine∈E Be

log β . Similarly, we have

w(T ′
k′ ) + wv′(k′) ≥

∑

e∈T ′

k′

β1−Be(k′)
Be − 1

≥ β
1−

B
e′

(k′)

B
e′ − 1 ≥ β1− 1

log β − 1 ≥
β

2
− 1 = |V |− 1. (15)

Case 3. Let Tk′ be the pseudo-multicast tree by
Algorithm 3 for multicast request rk′ . According to in-
equality (5), we have w(Tk′ ) + wv′(k′) ≤ 4(w(T ∗

k′ ) +
wv′(k′)) ≤ 4(w(T ′

k′ ) + wv′(k′)), where T ∗
k′ and v′ are the

optimal multicast tree and the server for rk′ by the optimal
solution. Since the proposed online algorithm rejected the
request, we have w(Tk′ ) > σe and/or wv′(k′) > σv . If

w(Tk′ ) > σe, we have w(T ′
k′ ) + wv′(k′) ≥ w(Tk′ )+wv′ (k

′)
4 ≥

w(Tk′)
4 ≥ σe

4 = |V |−1
4 , similarly, if wv′(k′) > σv , we have

w(T ′
k′ ) + wv′ (k′) ≥ σv

4 = |V |−1
4 . Summarizing the three

cases, we have w(T ′
k′ ) + wv′(k′) ≥ |V |−1

4 .

Proof of Theorem 3

Proof The competitive ratio of Algorithm 3 is analyzed as
follows. Let T ∗

k′ be the optimal multicast tree by the optimal
offline algorithm for request rk′ ∈ R(k) and v∗ ∈ T ∗

k′ be the
server for the service chain SCk′ of rk′ .

|V |− 1

4
(|R(k)|) ≤

∑

rk′∈R(k)

|V |− 1

4

≤
∑

rk′∈R(k)

∑

e∈T∗

k′

(β1−Be(k′)
Be − 1) + α

1−
Cv∗ (k′)

Cv∗ − 1, by Lemma 4

=
∑

rk′∈R(k)

(
∑

e∈T∗

k′

ce(k
′)/Be + cv∗(k′)/Cv∗),

≤
∑

rk′∈R(k)

(
∑

e∈T∗

k′

ce(k)/Be + cv∗(k)/Cv∗)

≤
∑

e∈T∗

k′

ce(k)
∑

rk′∈R(k)

1/Be + cv∗(k)
∑

rk′∈R(k)

1/Cv∗ ,

≤
∑

e∈E

ce(k) +
∑

v∈VS

cv(k). (16)

Following inequalities (16) and Lemma 3, we have

|V |− 1

4
(|R(k)|) <

∑

e∈E

ce(k) +
∑

v∈VS

cv(k)

≤ 2C(k) logα(|V |− 1) + 2B(k) logβ(|V |− 1)

≤ 2|S(k)|Cmax logα(|V |− 1) + 2|S(k)|bmax log β(|V |− 1)

= 2|S(k)|(|V |− 1)(Cmax logα+ bmax log β), (17)

where Cmax = argmaxk Cv(SCk) and bmax = argmaxk bk,
i.e., the maximum computing and bandwidth resource de-
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mands of all requests. Inequality (17) then can be rewritten
as

|R(k)|/|S(k)| ≤ 8(Cmax logα+ bmax log β). (18)

The competitive ratio of Algorithm 3 thus is

|S(k)|

|OPT |
≥

|S(k)|

|R(k) ∪ S(k)|

≥
|S(k)|

|R(k)|+ |S(k)|
=

1

|R(k)|/|S(k)| + 1

≥
1

1 + 8(Cmax logα+ bmax log β)
, by inequality (18)

≥
1

c′ log |V |
,when Cmax and bmax are given constants,

where c′ > 0 is a positive constant and α = β = 2|V |. The
competitive ratio of the competition ratio of Algorithm 3
thus is O(log |V |) when α = β = 2|V |.

The rest is to analyze the time complexity of the pro-
posed algorithm. The construction of Gk takes O(|Vk| +
|Ek|) = O(|V | + |E|) time, while finding an approxi-
mate multicast tree from Gk takes O(|Vk|3) = O(|V |3)
time, by the 2-approximation algorithm of Kou et al. [20].
Algorithm 3 thus takes O(k|V |3) time if there are k re-
quests.
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